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Abstract

Objectives It has been reported that the non-renal clearance of furosemide was
significantly faster in rats pretreated with phenobarbital but was not altered in rats
pretreated with 3-methylcholanthrene. However, no studies on other cytochrome P450
(CYP) isozymes have yet been reported in rats.
Method Furosemide 20 mg/kg was administered intravenously to rats pretreated with
various CYP inducers – 3-methylcholanthrene, orphenadrine citrate and isoniazid, inducers
of CYP1A1/2, 2B1/2 and 2E1, respectively, in rats – and inhibitors – SKF-525A (a non-
specific inhibitor of CYP isozymes), sulfaphenazole, cimetidine, quinine hydrochloride and
troleandomycin, inhibitors of CYP2C6, 2C11, 2D and 3A1/2, respectively, in rats.
Key findings The non-renal clearance of furosemide was significantly faster (55.9%
increase) in rats pretreated with isoniazid, but slower in those pretreated with cimetidine or
troleandomycin (38.5% and 22.7% decreases, respectively), than controls. After incubation
of furosemide with baculovirus-infected insect cells expressing CYP2C11, 2E1, 3A1 or
3A2, furosemide was metabolized via CYP2C11, 2E1, 3A1 and 3A2.
Conclusions These findings could help explain possible pharmacokinetic changes of
furosemide in various rat disease models (where CYP2C11, 2E1, 3A1 and/or CYP3A2 are
altered) and drug–drug interactions between furosemide and other drugs (mainly
metabolized via CYP2C11, 2E1, 3A1 and/or 3A2).
Keywords enzyme inducers and inhibitors; furosemide; pharmacokinetics; rats

Introduction

Furosemide, a loop diuretic, is widely used for the treatment of ascites and oedema of
cardiac, renal or hepatic origin, and also hypertension; approximately 50% of intravenous
furosemide is excreted via the kidney.[1,2] Furosemide is metabolized solely to a
glucuronide conjugate in humans.[3] Glucuronide formation of furosemide has also been
reported in dogs[4] and rabbits.[5] 4-Chloro-5-sulfamoylanthranilic acid was found in rats.[6]

There have been a few reports on the metabolism of furosemide via hepatic
microsomal cytochrome P450 (CYP) isozymes in humans and rats. For example, the
time-averaged non-renal clearance (CLNR) of furosemide tended to be faster (but not
significantly so) among smokers (3-methylcholanthrene (3-MC) type; a main inducer of
CYP1A1/2).[7] After intravenous administration of furosemide at a dose of 2 mg to rats
pretreated with 3-MC or phenobarbital (inducers of CYP1A1/2 and 2B1/2, respectively,
in rats),[8] the CLNR of furosemide was significantly faster (34.9% increase) in
phenobarbital-treated rats, but was not altered in 3-MC-treated rats.[9] The oxidation of
furosemide by rat hepatic microsomes has been reported.[10] Also, formation of the
g-ketocarboxylic acid metabolite of furosemide was CYP-dependent in rats.[11] However,
the CYP isozymes responsible for the metabolism of furosemide in rats in vivo does not
seem to be have been thoroughly studied. Thus, in the present study, furosemide at a dose of
20 mg/kg was infused for 1 min to rats pretreated with the CYP inducers 3-MC,
orphenadrine citrate or isoniazid (inducers of CYP1A1/2, 2B1/2 and 2E1, respectively, in
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rats[8]) or the inhibitors SKF-525A (a non-specific inhibitor of
CYP isozymes), sulfaphenazole, cimetidine, quinine hydro-
chloride or troleandomycin (inhibitors of CYP2C6, 2C11, 2D,
3A1 and 3A2, respectively, in rats[8,12–14]) and untreated
control rats. Furosemide was also incubated with microsomes
from baculovirus-infected insect cells expressing CYP2C11,
2E1, 3A1 and 3A2.

The purpose of this study was to report the involvement of
hepatic CYP2C11, 2E1, 3A1 and 3A2 in the metabolism of
furosemide in male Sprague-Dawley rats.

Materials and Methods

Chemicals

Furosemide intravenous solution (Lasix; 2 ml ampoule;
10 mg/ml) and telithromycin (internal standard for the HPLC
analysis of furosemide) were from Han Dok Pharmaceutical
Company (Seoul, South Korea) and Sanofi-Aventis (Paris,
France), respectively. NADPH as a trisodium salt, 3-MC,
orphenadrine citrate, isoniazid, cimetidine, SKF-525A,
sulfaphenazole, quinine hydrochloride and troleandomycin
were purchased from Sigma-Aldrich Corporation (St Louis,
MO, US). Microsomes from baculovirus-infected insect cells
expressing CYP2C11, 2E1, 3A1 and 3A2 (Supersomes) were
obtained from Gentest Corp. (Woburn, MA, US). Other
chemicals were of reagent or HPLC grade.

Animals

Protocols for animal studies were approved by the Institute
of Laboratory Animal Resources of the Seoul National
University, Seoul, South Korea. Male Sprague-Dawley rats
(6–8 weeks old, weighing 245–315 g) were purchased from
Taconic Farms Inc. (Samtako Bio Korea, O-San, South
Korea). They were maintained in a clean room (Animal
Center for Pharmaceutical Research, College of Pharmacy,
Seoul National University) at a temperature of 22 ± 2∞C with
a 12 h light–dark cycle (lights on 07:00–19:00) and relative
humidity of 55 ± 5%. Rats were housed in metabolic cages
(Tecniplast, Varese, Italy) under filtered pathogen-free air,
with food (Samyang Company, Pyungtaek, South Korea) and
water available ad libitum.

Pretreatment of rats with cytochrome P450
inducers and inhibitors

Ratswere treated as follows. Sulfaphenazole: single intravenous
injection of 80 mg (2 ml)/kg (dissolved in distilled water with a
minimumamount of 10MNaOH tomake a pHof approximately
8.0);[13] SKF-525A: a single intraperitoneal injection of
50 mg (3.3 ml)/kg (dissolved in 0.9% NaCl injectable solu-
tion);[15] cimetidine: 150 mg (5 ml)/kg (dissolved in 0.9%NaCl
injectable solution acidified with HCl to make a pH of 4.0);[12]

troleandomycin: 500 mg (5 ml)/kg (dissolved in 0.9% NaCl
injectable solution acidified with HCl to make a pH of 4.0);[16]

quinine hydrochloride: 20 mg (5 ml)/kg (dissolved in 0.9%
NaCl injectable solution;[14] isoniazid: three daily intraperito-
neal injections of 150 mg (3 ml)/kg (dissolved in 0.9% NaCl
injectable solution;[17] orphenadrine citrate: 60 mg (5 ml)/kg
(dissolved in 0.9% NaCl injectable solution;[18] 3-MC: four
daily intraperitoneal injections of 20 mg (3.3 ml)/kg (dissolved

in corn oil).[9,19] Control groups received an intraperitoneal or
intravenous injection of 5 ml kg-1 0.9% NaCl injectable
solution, or 3.3 ml kg corn oil for the 3-MC control group.
Rats had free access to food and water during the pretreatment.

Intravenous study

Early in the morning, the jugular vein (for drug administra-
tion) and the carotid artery (for blood sampling) of each rat
were cannulated with a polyethylene tube (Clay Adams,
Parsippany, NJ, US) under light ether anaesthesia.[20] Both
cannulae were exteriorized to the dorsal side of the neck and
terminated with a long silastic tube (Dow Corning, Midland,
MI, US). Both silastic tubes were inserted into a wire sheath
to allow free movement of the rat. Rats were then housed
individually in metabolic cages (Daejong Scientific Com-
pany, Seoul, South Korea) and allowed to recover from the
anaesthesia for 4–5 h before beginning the experiment. Rats
were not restrained.

An experiment was performed just after the injection for the
sulfaphenzole groups,[13,21] after the first hour for the SKF-
525A and quinine groups,[14,15] after 1.5 h for the cimetidine
groups,[12] after 2 h for the troleandomycin groups,[16,22,23]

on the fourth day for the isoniziad and orphenadrine citrate
groups,[16–18,23,24] and on the fifth day for the 3-MC
groups.[9,11]

Furosemide was administered intravenously at a dose of
20 mg (2 ml)/kg for 1 min via the jugular vein of all rats
(n = 5–8 per group). Blood samples (approximate 0.12 ml)
were taken via the carotid artery at 0 (control), 1 (end of the
infusion), 5, 15, 30, 45, 60, 90, 120, 180, 240, 300 and 360 min
after the start of the intravenous infusion of furosemide.
A heparinized 0.9% NaCl injectable solution (20 units/ml;
0.25 ml) was used to flush the cannula after each blood
sampling to prevent blood clotting. Blood samples were
immediately centrifuged (16 000g for 5 min) to minimize the
‘blood storage effect’ (the change in plasma concentration of
furosemide due to time elapsed between collection and
centrifugation of the blood samples),[25] and a 50 ml aliquot
of each plasma sample was stored at -70∞C prior to HPLC
analysis of furosemide. At the end of 8 h, each metabolic cage
was rinsed with 15 ml distilled water, and the rinsed material
was combined with the 8 h urine sample. The exact volume of
the combined urine sample was measured, and two 50 ml
aliquots of the combined urine sample were stored at -70∞C
prior to HPLC analysis of furosemide. At the same time (8 h),
rats were exsanguinated and killed by cervical dislocation.

Metabolism of furosemide by microsomes
from baculovirus-infected insect cells
expressing CYP2C11, 2E1, 3A1 and 3A2

The disappearance of furosemide was measured in micro-
somes from baculovirus-infected insect cells expressing
CYP2C11, 2E1, 3A1 and 3A2 (final concentration of each
60 pmol/ml). Microsomes were incubated in 100 mM phos-
phate buffer (pH 7.4) to which was added a 10 mL aliquot of
Sørensen phosphate buffer (pH 7.4) containing 5 mM

furosemide (final concentration 100 mM) and a 50 ml aliquot
of Sørensen phosphate buffer (pH 7.4) containing 1.2 mM

NADPH, in a final volume of 500 ml. Incubations were done
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in a thermomixer (Thermomixer 5436; Eppendorf, Hamburg,
Germany) at 37∞C and 500 oscillations per min. The reaction
was terminated by addition of 0.5 ml acetonitrile containing
500 mg/ml telithromycin (internal standard) after 30 min’
incubation.

Measurement of rat plasma protein binding of
furosemide using equilibrium dialysis

Protein binding of furosemide to fresh plasma from the
quinine-treated and control rats was measured using
equilibrium dialysis[26] at a furosemide concentration of
10 mg/ml. Plasma (1 ml) was dialysed against 1 ml isotonic
Sørensen phosphate buffer (pH 7.4) containing 3% (w/v)
dextran (‘the buffer’) to reduce volume shift[27] in a 1 ml
dialysis cell (Spectrum Medical Industries, Los Angeles, CA,
US) using a Spectra/Por 4 membrane (molecular weight
cut-off 12–14 kDa; Spectrum Medical Industries). To reduce
equilibrium time between the plasma and the buffer compart-
ments, furosemide was spiked into the plasma side.[28] After
incubation for 24 h at 37∞C, a 50 mL aliquot was collected from
each of the buffer and plasma compartments, and stored at-70∞C
prior toHPLCanalysis.Bindingof furosemide to humanalbumin
was independent of furosemide concentrations ranging from 1.8
to 36 mg/ml; the mean value was 97.2%.[29] In the preliminary
study, the protein binding values of furosemide at 1, 10 and
100 mg/ml in rat plasma were constant. Thus, a furosemide
concentration of 10 mg/ml was chosen for this plasma protein
binding study.

HPLC analysis of furosemide

Concentrations of furosemide were determined using a slight
modification of a reported HPLC method.[30] Telithromycin
was used as the internal standard. Briefly, a 0.3 ml aliquot of
acetonitrile containing 500 mg/ml telithromycin was added
to a 50 ml aliquot of sample. After vortex mixing and
centrifugation, a 50 ml aliquot of the supernatant was injected
directly onto a reverse-phase (C18) HPLC column. The
mobile phase was 0.005% (v/v) phosphoric acid in water:
acetonitrile at a ratio of 78:22 (v/v), run at a flow rate of
1.5 ml/min at room temperature. The column eluent was
monitored using a fluorescence detector at an excitation
wavelength of 226 nm and an emission wavelength of
388 nm. The retention times of furosemide and telithromycin
were approximately 4.3 and 7.8 min, respectively, in rat
plasma and urine samples. The quantitation limits of
furosemide in rat plasma and urine samples were 0.05 and
0.5 mg/ml, respectively. The inter- and intra-day coefficients
of variation were below 10.9% and 9.50%, respectively, in
the concentration ranges 0.05–1000 mg/ml for rat plasma and
0.5–100 mg/ml for rat urine.

Because furosemide is reported to be photode-
graded,[31,32] all samples were covered or wrapped with
aluminum foil or kept in the dark during the experiment or
when they were not in use.

Pharmacokinetic analysis

The total area under the plasma concentration–time curve
from time zero to time infinity (AUC) was calculated using

the trapezoidal rule/extrapolation method.[33] The area from
the last datum point to time infinity was estimated by
dividing the last measured plasma concentration by the
terminal-phase rate constant.

Standard methods[34] were used to calculate the following
pharmacokinetic parameters using a non-compartment ana-
lysis (WinNonLin v 2.1; Pharsight, Mountain View, CA,
US): the time-averaged total body and non-renal clearances
(CL and CLNR, respectively), mean residence time (MRT)
and apparent volume of distribution at a steady state (Vss).

[20]

Statistical analysis

Statistical analysis was performed using SPSS software. Data
are expressed as mean ± SD. One-way analysis of variance
was used to compare differences between the three or four
means for the unpaired data and then individual differences
among groups were determined using Duncan’s multiple
range test. The unpaired t-test was used to determine
differences between the two means for the unpaired data.
A P value < 0.05 was deemed significant.

Results

Pharmacokinetics of furosemide in rats
pretreated with cytochrome P450 inducers

The mean plasma concentration–time profiles of furosemide
following intravenous infusion (20 mg/kg) to rats pretreated
with 3-MC, orphenadrine citrate or isoniazid, and control rats
are shown in Figure 1; the relevant pharmacokinetic
parameters are listed in Table 1. After intravenous infusion
of furosemide, the plasma concentrations of furosemide
declined in a polyexponential fashion in all groups of rats.

Compared with control rats, the AUC was significantly
smaller (24.9% decrease), and CL and CLNR significantly
faster (36.3 and 55.9% increase, respectively) in isoniazid-
treated rats. However, the pharmacokinetics parameters of
furosemide were not significantly different between 3-MC
treated and control rats, and between orphenadrine citrate-
treated and control rats (Table 1).

Body weight gain was significantly less in the rats treated
with orphenadrine citrate or isoniazid than in their respective
controls, as reported in other studies.[21,35,36]

Pharmacokinetics of furosemide in rats
retreated with cytochrome P450 inhibitors

The mean plasma concentration–time profiles of furosemide
infusion (20 mg/kg) to rats pretreated with SKF-525A,
sulfaphenazole, cimetidine, quinine or troleandomycin, and
their respective controls are shown in Figure 2; relevant
pharmacokinetic parameters are listed in Table 2. After
intravenous infusion of furosemide, the plasma concentra-
tions of furosemide declined in a polyexponential fashion in
all groups of rats.

Compared with control rats, changes in the pharma-
cokinetic parameters of furosemide were as follows: the
AUC was significantly greater in troleandomycin- and
cimetidine-treated rats (43.6 and 36.5% increase, respec-
tively); MRT was significantly shorter (29.8% decrease) in
quinine-treated rats; Vss was significantly smaller (33.3%
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decrease) in troleandomycin-treated rats; CL was signifi-

cantly slower (23.8 and 28.2% decrease, respectively) in

SKF-525A- and troleandomycin-treated rats; and CLNR was

significantly slower in SKF-525A-, troleandomycin- and

cimetidine-treated rats (22.3, 22.7 and 38.5% decreases,

respectively). Pharmacokinetic parameters of furosemide

were not significantly different between sulfaphenazole-

treated and control rats (Table 2).

Metabolism of furosemide by microsomes
from baculovirus-infected insect cells
expressing CYP2C11, 2E1, 3A1 and 3A2

Rates for the disappearance (primarily metabolism) of
furosemide were: 10.3 ± 3.04, 9.12 ± 2.83, 13.9 ± 6.01 and
14.8 ± 6.70 nmol/pmol CYP/min for CYP2C11, 2E1, 3A1
and 3A2, respectively, suggesting that furosemide is
metabolized via CYP2C11, 2E1, 3A1 and 3A2.
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Figure 1 Mean arterial plasma concentration–time profiles of furosemide after intravenous infusion at a dose of 20 mg/kg to rats pretreated with

enzyme inducers (�), 3-methylcholanthrene (a), orphenadrine (b) or isoniazid (c), and control rats (�). Vertical bars represent the SD.
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Plasma protein binding of furosemide

Plasma protein binding (bound fraction) values for furose-
mide at 10 mg/ml were 90.8 ± 7.64% in quinine-treated rats
compared with 87.2 ± 5.31% in the control rats (not
significantly different).

Discussion

After intravenous administration of furosemide, the con-
tribution of the gastrointestinal (including the biliary)
excretion of unchanged drug to the CLNR of furosemide is
negligible: less than 5% of the intravenous dose was excreted
in the 24 h bile[37] and recovered from the gastrointestinal
tract at 24 h.[30] The small values were unlikely to be due to
chemical and enzymatic degradation of furosemide in rat
gastric juices. Furosemide is stable for up to 2 h when
incubated with human gastric or duodenal fluids.[30,38] Thus,
the CLNR values for furosemide listed in Tables 1 and 2
represent the metabolic clearance of the drug, and changes in
the CLNR of furosemide represent changes in the metabolism
of the drug in rats.

To find out whether hepatic CYP isozymes are involved
in the metabolism of furosemide in rats, rats were pretreated
with SKF-525A, a non-specific inhibitor of hepatic CYP
isozymes. The CLNR of furosemide was significantly slower
than in control rats (Table 2), indicating that furosemide is
metabolized via hepatic CYP isozymes in rats. Thus, various
inducers (Table 1) and inhibitors (Table 2) of hepatic CYP
isozymes were used to identify which hepatic CYP isozymes
are involved in the metabolism of furosemide in rats. In rats
pretreated with isoniazid (a main inducer of CYP2E1 in rats),
the CLNR of furosemide was significantly faster than that in
control rats (Table 1). In contrast, in rats pretreated with
cimetidine or troleandomycin, inhibitors of CYP2C11 and
3A1/2, respectively, in rats, the CLNR of furosemide was

significantly slower than in control rats (Table 2). These data
suggest that hepatic CYP2E1, 2C11 and 3A1/2 contribute to
the metabolism of furosemide in rats. The CLNR of
furosemide was similar in rats pretreated with orphenadrine
citrate, a main inducer of CYP2B1/2 in rats, and control rats.
However, Choi et al.[9] reported that the CLNR of furosemide
was significantly faster in rats pretreated with phenobarbital
(a main inhibitor of CYP2B1/2 in rats). This may reflect the
fact that phenobarbital induces CYP3A1 in addition to
CYP2B1/2.[39] Metabolism of furosemide was also mediated
via CYP3A1/2 in the present study.

To confirm the CYP isozymes responsible for the
metabolism of furosemide, microsomes from baculovirus-
infected insect cells expressing CYP2C11, 2E1, 3A1 and
3A2 were incubated for 30 min with furosemide. Furosemide
was metabolized via CYP2C11, 2E1, 3A1 and 3A2.

After intravenous administration of furosemide to rats
pretreated with quinine, the Vss of furosemide was sig-
nificantly smaller than in control rats (Table 2). However,
this was not likely to be due to a significantly decreased free
(unbound to plasma proteins) fraction of furosemide in
plasma in the treated rats, as plasma protein binding values
for furosemide were similar in quinine-treated and control
rats. Although the exact reason is not clear, the smaller Vss of
furosemide in quinine-treated rats could have been due to
decreased affinity of rat tissues for furosemide caused by
quinine. Similar result have also been reported for the Vss

of metformin in quinine-treated rats, which decreased by
71.3%; the free fraction of metformin in quinine-treated rats
increased by only 13.4%.[35]

In conclusion, furosemide was metabolized via
CYP2C11, 2E1, 3A1 and 3A2 in rats. This result could
help to explain the possible pharmacokinetic changes of
furosemide in rat models of acute renal failure induced by
uranyl nitrate,[40] diabetes mellitus induced by streptozotocin
or alloxan,[41] protein/calorie malnutrition,[42] inflammation

Table 1 Pharmacokinetic parameters of furosemide after intravenous infusion at a dose of 20 mg/kg to rats pretreated with 3-methylcholanthrene

(MCT), orphenadrine (OPT) or isoniazid (INT), and control rats (MCC, OPC, and INC, respectively)

Parameter MCC (n = 5) MCT (n = 5) OPC, INC (n = 7) OPT (n = 5) INT (n = 8)

Initial body weight (g) 244 ± 5.63 246 ± 7.76 254 ± 11.1 260 ± 6.12 251 ± 13.6

Final body weight (g)a 274 ± 10.8 278 ± 6.71 279 ± 8.52 256 ± 11.9 243 ± 16.0

AUC (mg/min/ml)b 3560 ± 628 3800 ± 812 3780 ± 311 3520 ± 1170 2840 ± 481

Cmax (mg/ml) 271 ± 39.4 265 ± 40.6 293 ± 111 265 ± 161 260 ± 159

Terminal half-life (min) 69.0 ± 13.1 69.2 ± 9.29 74.9 ± 16.8 73.7 ± 21.9 63.5 ± 23.7

MRT (min) 37.5 ± 5.49 41.6 ± 11.0 38.4 ± 7.72 34.7 ± 11.9 28.3 ± 9.77

Vss (ml/kg) 214 ± 37.5 217 ± 25.8 203 ± 32.4 199 ± 48.4 209 ± 103

CL (ml/min per kg)b 5.76 ± 1.04 5.44 ± 1.06 5.32 ± 0.430 6.08 ± 1.48 7.25 ± 1.34

CLNR (ml/min per kg)c 2.66 ± 0.595 2.36 ± 0.321 1.95 ± 0.413 2.08 ± 0.590 3.04 ± 0.703

Ae0–8 h (% of dose)d 54.1 ± 3.33 56.1 ± 3.58 63.6 ± 6.34 65.4 ± 5.39 58.2 ± 5.08

Values are mean ± SD.

AUC, total area under the plasma concentration–time curve from time zero to time infinity; Cmax, peak plasma concentration; MRT, mean residence

time; Vss, apparent volume of distribution at steady state; CL, time-averaged total body clearance; CLNR, time-averaged non-renal clearance; Ae0–8 h,

percentage of the dose excreted in the 8 h urine.
aOPT and INT groups were significantly different (P < 0.05) from OPC and INC groups.
bINT group was significantly different (P < 0.05) from INC group.
cINT group was significantly different (P < 0.05) from INC and OPT groups.
dOPT group was significantly different (P < 0.05) from INT group.
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induced by Escherichia coli lipopolysaccharide[43] or
Klebsiella pneumoniae endotoxin,[44] dehydration,[45] and
mutant Nagase analbuminaemic rats[46] in which the protein
expression and/or mRNA levels of CYP2C11, 2E1, 3A1

and/or 3A2 are changed. Our findings could also explain
possible drug–drug interactions between furosemide and
other drugs (mainly metabolized via CYP2C11, 2E1, 3A1
and/or 3A2).
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Figure 2 Mean arterial plasma concentration–time profiles of furosemide after intravenous infusion at a dose of 20 mg/kg to rats pretreated with

enzyme inhibitors (�), SKF 525-A (a), cimetidine (b), quinine (c), sulfaphenazole (d) or troleandomycin (e), and control rats (�). Vertical bars
represent SD.
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